1. Thermal Imaging
  2. Thermographic Microscopy in Electronics
ImageIR® 8300 – Precise, Reliable and Efficient

Ther­mo­graphic Micro­scopy in Electronics

At the same time that the performance of electronic components is being driven ever higher the demand for thermal management at ever smaller scales is also occurring.

Inverter with loaded components to forecast their lifecycle - picture credits: istock.com / Mordolff

At the same time that the performance of electronic components is being driven ever higher the demand for thermal management at ever smaller scales is also occurring. The Fraunhofer Institute for Silicon Technology (ISIT), as a development partner, supports companies in meeting these growing needs in an optimal fashion. As a result, the latest scientific developments can be implemented in new products very quickly, sus-taining the rapid rate of innovation required by the industry. In order to deal with this challenge, the ISIT, as well as other Fraunhofer Institutes, has a range of excellent technology. This technology enables its specialists to fulfill their tasks in the very best way.

Download case study

InfraTec Solution

Fraunhofer Institute for Silicon Technology (ISIT)
25524 Itzehoe

www.isit.fraunhofer.de

Infrared camera
ImageIR® 8300

Analysing electronic components the ISIT has to detect smallest possible temperature differences. It does so by using the thermal camera ImageIR® 8300 from InfraTec which can precisely measure temperature differences of 20 mK securely identifying any even just emerging thermal issue. Thus, development failures can be avoided at an early stage. By using a detec-tor with (640 x 512) IR pixels at a 15 µm pitch and a high performance 3x microscopic lens a geometric reso-lution of only 5 µm can be achieved. At the same time, a field of view of (3.2 x 2.6) mm2 is displayed which is suitable for many microelectronic applications. Additional, easily interchangeable lenses with a range of focal lengths enable the ISIT to further exploit the flexibility of their infrared camera across a wide variety of applications.

Inverter with loaded components to forecast their lifecycle
Inverter with loaded components to forecast their lifecycle

Another benefit for the ISIT derives from the precision calibration of the ImageIR® 8300 camera. The use of a set of additional side calibration curves compensates for drift and ensures a maximum measurement accuracy even under fluctuating measurement conditions. As with all thermographic testings of electronic components and circuits, measurements are influenced by the differing emissivity of the individual components. To overcome this situation, InfraTec offers an automated pixel wise emissivity correction routine directly in its control and analysis software IRBIS® 3. Using these tools precise statements can be made about temperature distributions and developments over time. With the time component of the heating playing an increasingly important role in the ever decreasing sizes of components, the ISIT is able to take advantage of the multi-kHz frame rates possible with the ImageIR® 8300.

Advant­ages of this Ther­mo­graphy Solu­tions in this Applic­a­tion

InfraTec glossary modules

Modular Concept for Your Flex­ib­ility

The camera can be adapted to all requirements of the user due to modular design of the camera series ImageIR®. This means that a customer-specific thermography system is achieved in every direction. The ImageIR® can also be subsequently retrofitted or upgraded in the event of changing measurement requirements. In this way, maximum investment security is achieved.

InfraTec thermography - Geometrical Resolution

Geomet­rical Resol­u­tion – Effi­cient Analysis of Complex Assem­blies

InfraTec's infrared cameras with cooled and uncooled detectors have native resolutions up to (1,920 × 1,536) IR pixels. Spatially high-resolution thermograms ensure that components and assemblies are imaged down to the smallest detail and thus defects can be reliably detected and precisely localised.

HighSense for thermographic camera series ImageIR®

High­Sense – Always the Optimal Camera Setting

Thanks to HighSense, ImageIR® users have the option of setting up individual measuring ranges based on the factory calibration that best suit the respective task. Depending on the measuring task, the required temperature range can be selected and the optimum integration time for this purpose is calculated – or one decides to proceed in reverse order. Thus, the calibration can be retained even in the case of changed integration times.

InfraTec glossary modules

Modular Concept for Your Flex­ib­ility

The camera can be adapted to all requirements of the user due to modular design of the camera series ImageIR®. This means that a customer-specific thermography system is achieved in every direction. The ImageIR® can also be subsequently retrofitted or upgraded in the event of changing measurement requirements. In this way, maximum investment security is achieved.

InfraTec thermography - Geometrical Resolution

Geomet­rical Resol­u­tion – Effi­cient Analysis of Complex Assem­blies

InfraTec's infrared cameras with cooled and uncooled detectors have native resolutions up to (1,920 × 1,536) IR pixels. Spatially high-resolution thermograms ensure that components and assemblies are imaged down to the smallest detail and thus defects can be reliably detected and precisely localised.

HighSense for thermographic camera series ImageIR®

High­Sense – Always the Optimal Camera Setting

Thanks to HighSense, ImageIR® users have the option of setting up individual measuring ranges based on the factory calibration that best suit the respective task. Depending on the measuring task, the required temperature range can be selected and the optimum integration time for this purpose is calculated – or one decides to proceed in reverse order. Thus, the calibration can be retained even in the case of changed integration times.

Relevant Indus­tries & Applic­a­tions

microthermography

Micro-Ther­mo­graphy

Micro-thermography allows for the thermal analysis of smallest structures in the micrometer range, providing a detailed representation of the temperature distribution on complex electronic assemblies.

All branches and application areas